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1 Abstract

Terrains are a central component of convincing 3D graphics. Various approaches exist to model and cus-

tomize terrains. However, many of these approaches rely on significant background knowledge of geologic

processes and complicated user interfaces. To solve this problem, we explore the use of virtual reality for

terrain generation. In our system, users customize terrain through hand gestures. We develop two inter-

faces to explore this approach. The first interface allows users to stretch and pull the terrain surface similar

to clay or fabric. The second interface allows users to push terrain material similar to the mechanics of a

sandbox. Additionally, we developed an erosion process to smooth out terrains throughout user interac-

tions in the sandbox model. The goal of our research is to determine which interaction scheme is more

intuitive and effective for terrain generation. Our user study (N = 25), shows that the sand model is on

average easier to use than the mesh model.

2 Introduction

Terrains central visual and structural component of games, movies and simulations. Terrains can be quite

complex, however. Realistic terrains have a combination of large-scale features such as mountains and

valleys as well as small scale features such as streams and boulders. Geological limitations restrict the

domain of natural terrains. For example, Larsen and Montgomery [16] suggest that terrain hill slopes

steeper than 35 destabilize quickly, triggering landslide events.

Many terrain generation tools exist that allow users to generate randomized realistic digital terrains.

These tools rely on many common techniques to synthesize landscapes. One of the simplest techniques
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is procedural patterns. Pseudo-random noise patterns such as Perlin Noise [9] can be used to synthesize

random elevation data that resemble landscapes. Although this technique is relatively fast, it allows little

customization of the type and layout of landscape features.

A second common technique is example-based modeling. These techniques leverage real elevation data

taken from geologic surveys to generate realistic features. User specified low resolution guide terrains are

used as input into matching algorithms that cut and stitch pieces of real elevation data together to create

high resolution terrains that match the layout specifications of the guide terrain. Although this technique

allows users to supply guide images to control layout of features, from what we have seen, this work does

not focus on the ability to construct these guide images.

Geologic simulations are also commonly used for terrain generation. These simulations rely on models

of geologic principles such as water flow, erosion and hill slope stability. Simulations can generate the most

realistic results. However, large-scale simulations are often the most computationally expensive. Similar

to example based modeling, guide terrains may be input into erosion models. However, since erosion

processes have potential to drastically alter landscapes, specific details provided in the guide terrains will

likely not be preserved.

From our perspective, all of the above techniques lack a convenient way for users to customize the

shape of landscape features. The techniques do not focus on the direct shape, rather, they focus on speed,

realism, or layout. In general, we believe the above approaches work well for generating large scale random

landscapes, however, they permit little artist control.

A newer technique used for terrain generation is sketch-based modeling. In this approach, users may

draw feature curves using mouse strokes that define large scale features of the terrain [10, 12]. Each curve

may define a specific feature such as the silhouette of a mountain or valley. This technique is more suited to

fine-tuned artist control. However, in order for a complete terrain to be designed, hundreds of curves must

be specified by the user. To address this, systems have been explored that support a mixture of random

procedural generation and feature curve sketching [11, 19].

Although terrain sketching provides increased artist control, the technique still comes with an inherent

layer of complexity shared by the all of the terrain generation techniques discussed thus far. All of the

tools discussed share the familiar windows, icons, menus, pointing (WIMP) interface. In other words, they

rely on a mouse and keyboard as the main mode of interaction. Although point and click interfaces can

be efficiently leveraged by experienced users to create finely detailed results, some argue that the style of

interface does not lend itself to modeling 3D shapes and structures, especially for inexperienced users [14].

In this project, we present a new approach to modeling terrain. The approach relies on the gestural

power of virtual reality (VR) systems. Users of our system are presented with a scaled down terrain visual-
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ized within a VR headset. Users may articulate gestures using hand-held controllers to sculpt and shape the

terrain in real time. Two interaction schemes were developed and implemented in this project. In the first

scheme, the terrain is modeled as a stretchable surface. User may stretch, push, and pull the terrain using

hand gestures to form mountains and valleys. In the second scheme, the terrain is modeled as a sandbox.

Users may push material into hills as well as drag and drop material from one location to another.

The goal of this project is to determine which of these schemes is more effective for generating cus-

tomized terrains. Additionally, we hope to determine the effectiveness of VR as tool for visualizing and

interacting with digital landscapes. To accomplish this goal, we design a user study. In the study, users

alternate using the two schemes to accomplish a goal of matching the starting terrain to a goal terrain.

We begin this paper by presenting background information on height fields (Section 3.1). Next, we

examine some of the previous work in the field of terrain generation (Section 3). We then discuss methods

used in our project beginning with general hardware and technical choices (Section 4.1). Next we present

two interactions schemes developed for the project (Section 4.2). Next, we discuss an erosion algorithm

used to keep our terrains geologically reasonable (Section 4.2.3). Finally, we discuss a user study that was

designed to compare the two interfaces developed (section 4.3).

3 Related Work

We now examine previous work related to our project. We begin with a basic discussion of height fields

and polygon meshes.

3.1 Background

Height fields are a common standard for storing terrains [1]. Height fields are rectangular grids of discrete

vertical displacement values. In the context of virtual terrains, each cell in the grid may store the elevation

of the terrain at that point (Figure 1). Height fields provide a memory efficient and general data structure

for storing terrain data. The downside of this approach, however, is their inability to store features such

as caves and overhangs. This is because each cell in a height field only specifies one elevation value in

the xy-plane where z represents the vertical axis. Most terrains can be sufficiently represented without

the presence overhangs and caves, however. In this project, we restrict generated terrains to the subset of

terrains that can be stored as a height field without loss of features. This restriction simplifies the domain

of possible terrains without significant loss of potential for generating realistic terrains. Additionally, this

restriction allows industry standard height fields to be easily exported from our program.
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Figure 1: An example height field and the resulting mesh after displacement. Brighter values in the height
field indicate higher elevation. Conventionally, height fields store elevations in a 0-1 range.

Polygon meshes are a common standard for storing 3D objects. Meshes are composed of a list of poly-

gons (typically triangles) P . Each polygon contains a list of vertices, V , a list of edges, E. 3D objects are

defined by a series of vertices connected by edges and polygons to form a surface. Meshes are a common

choice because they are relatively lightweight to store. Additionally, meshes are easy to render on modern

graphics cards.

3.2 Mesh Sculpting

Next, we will discuss relevant terrain generation work. We begin with mesh-sculpting interfaces. Next,

we discuss VR modeling interfaces. Finally, we discuss various artist friendly and customization focused

terrain generation techniques.

Polygon meshes are one of the most prevalent techniques to represent 3D objects [4]. The discrete nature

of vertexes, edges and faces allows for intuitive manipulation and refinement of shape. This property has

been leveraged by several tools that use a sculpting interface to modify meshes [2] [18] [17]. These tools

allow users to push pull and stretch 3D meshes to create complex shapes. This is generally achieved using

a simple mouse dragging interface. However, some authors have looked into using specialized external

control mechanisms to expedite the process such as a trackball for easier navigation [17]. In general, in

order to use these sculpting tools, the user specifies a point on the surface of the mesh which is the ”origin”

of the action. For example, a pull action might be positioned on the nose of a character’s face represented

using a mesh. As the user drags their mouse to move around the central action point, the action point

is moved to match their mouse movements. In addition, any vertexes near the action point are moved

similarly based on their distance to the center action point. A decay function is used to control the rate in

which distance from the central action point effects the amount of change (Figure 2).

Many implementations have multiple variations of the sculpt action available through different user
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Figure 2: A set of example decay functions used. Each curve specifies how much vertexes should be modi-
fied based on their distance to a center action point.

selected tools. One of the driving reasons for this is the fact that mouse drag actions are limited to modifying

shape along a plane parallel to the screen. Essentially, relative to screen space, the user may only drag and

pull the surface up, down, left or right. This problem opens the door for other types of tools. One example

is a tool that is analogous to adding a blob of new material to a clay sculpture. The user may click on a point

on the surface of the mesh to slightly extrude vertexes within the region along the normal of the surface.

These tools similarly rely on a decay function. The need for these additional tools is largely a matter of

limitations of mouse and keyboard interfaces. Our interface relies on a more unified system that supports

sculpting with 6 degrees of freedom without need to explicitly specify the type of sculpting action being

conducted.

3.3 Virtual Reality Modeling

The challenge of intuitively representing 3D modeling interfaces in virtual reality has been explored by

multiple authors [14, 5, 15, 13, 6]. We examine a few relevant works.

In [14], the author discusses a system for modeling 3D shapes using a sketching interface in virtual

reality. The technique begins with 2D sketches that are seen projected in the virtual reality environment.

Once the sketch appears within the head mounted display, the user may select given lines that form the

sketch using hand-held controllers. Using gestures such as pushing and pulling, users may contort they

sketch lines into ’rails’. These rails are 3D curves that will define the skeleton of the finished 3D model. Once

a collection of 3D ’rail’ curves is created, the user may use a sweeping gesture to fill in gaps between curves

with a surface. The approach offers simple tools for defining 3D shape. For our purpose, the use of sketch

lines is irrelevant, however. Next, we examine the work of Jerald et al. [15]. In this work, the domain of

possible actions is significantly restricted. The authors here choose to use more intuitive simplified gestures

such as pushing, pulling, and stretching to form shapes from geometric primitives. Additionally, shapes

designed may be ’swept’ in various directions to form new extruded shapes. Bruno et al. [5] takes a similar

approach to virtual reality 3D modeling to [14]. In this work, the author creates a virtual reality interface
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Figure 3: VR interface from [5].

for the 3D modeling program Google Sketchup. The interface follows a 2D sketch first, extrude second

approach. Using VR controllers, the user may draw contours of shapes on the ground or on preexisting

models. These sketches may then be pushed or pulled to extrude new shapes (Figure 3).

3.4 Sketch-Based Terrain Modeling

Several papers have been written on using sketching interfaces for terrain modeling. The following paper

from Gain et al. [10] was appropriately named Terrain Sketching. In this work, the user may enter three

distinct modes that each provide a different set of tools for sketching. The first technique is silhouette mode.

This system largely matches the terrain sketching features implemented by Cohen et al. [8]. The endpoints

of the user stroke are used to guide ray casts against the terrain surface. These two points are combined

with form a vertical plane. The intersection of this plane with the surface creates the shadow curve (See

Figure 4. This curve may then be modified from a vertical view to allow for curving mountain chains. The

system also allows the user to enter region mode. This allows the user to have fine control over the surface

texture of the terrain. From a top-down perspective, the user may define a region and a corresponding

stroke that is used as a template for how rough the surface should be within the region. Finally the user is

allowed to finish refinement by choosing to delete certain terrain features they built previously. One major

drawback of the system is its inability to support significant modification after a terrain feature is built. In

the system, silhouette curves and shadow curves may not be modified after creation, only deleted. The al-

gorithm uses a tree data structure to store the feature curves. A negative consequence of this is that deletion

of feature nodes results in deletion of their children as well. Another drawback of the approach is speed.

The system is implemented on the CPU, and requires multiple seconds to generate terrain from the created
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Figure 4: A sketch, shadow curve and footprint, and finally the finished terrain feature. Image from [10].

curves. Thus, interactive modifications to the finished product could not easily be achieved. The authors

conclude their paper with discussion about how texture synthesis may be applied to achieve more realistic

automated details. This approach, along with faster GPU based techniques [7, 3] are discussed below.

The following work by Houssam Hnaidi delved deeper into how sketch curves are represented, and

leveraging the GPU [12]. In this work, users could define feature curves and control curves. Control curves

take the place of previous hand sketching tools, but offer similar advantages. The control curves may be

used to define the locations of ridges or river beds. Feature curves allow the curvature of the ridge to be

changed. Each feature curve is represented with a cubic spline and allows the user to define the smoothness

and angle of the ridge (Figure 5). For example, a soft rounded concave-up feature curve may be used with

a control curve to define a river bed. The paper describes a method of rasterizing a terrain height field

from these curves. Unlike the approach discussed by Gain et al. [10], this approach allows feature curves

to intersect and overlap. In regions of intersecting curves, Laplace diffusion is used to fill in gaps that are

inconclusive. Another advantage over previous work is the ability to customize curves throughout the

editing process. Similar to [10], the final terrain is displaced with a noise layer to provide high frequency

details. Progress is made in this work by leveraging the parallelism of the GPU. This allows for fast and

efficient generation of terrain maps. The paper reports times less than half a second for large, 1024x1024

terrain maps. One downside of the approach is the amount of user control that is required to see realistic

results. For very large scenes, it would take significant time to define the necessary control curves to create

a convincing landscape.

A year later, in collaboration with Houssam Hnaidi, Bernhardt et al. [3] made improvements to the

efficiency of the approach. This is the first approach we discuss that is capable of truly interactive editing.

The approach uses a quad-tree to allow the system to generate lower resolution patches on the terrain in

regions that are low in detail or are out of sight from the camera. The paper breaks down the two main user

interactions with the system as drawing strokes, and moving the camera. Both interactions force updates

to occur within the quad-tree. In the approach, the CPU is used to manage the quad-tree that stores low
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Figure 5: A ridge line and the corresponding feature curve (lower right). Image from [10].

resolution details. Then, the GPU is employed to iteratively simplify the information supplied via the

quad-tree and run diffusion steps (similar to [12]). Then, the GPU is employed again to iteratively tessellate

the terrain mesh until the desired detail is reached. The control curve user interface heavily resembles the

work of Hnaidi et al. [12]. The approach boasts large increases in efficiency using their coupled CPU-GPU

approach. For terrain maps as large as 2048 x 2048, they record total terrain generation times as low as 40

ms. These speeds allow for efficient, real-time modification and represents a significant step forward in the

field.

The work on sketch based modeling approaches was continued by Tasse et al. [21]. The major difference

in this approach is that it is meant for modifying existing terrains as apposed to creating new terrains from

scratch. The focus of the system is thus preserving the structure of original features while still allowing the

user to intuitively and quickly make modifications through sketching. The user interaction all takes place

from a first person perspective. This choice allows modification to be quickly sketched from the standpoint

of a player in the virtual world. The approach begins by extracting ridge and silhouette lines from the ter-

rain from a given perspective. This is achieved by finding all edges on the terrain mesh that are adjacent to

a polygon that is facing the camera and a polygon that is facing away from the camera. Then once all terrain

ridges are identified, similarly to previous work, the user may sketch a number of silhouette lines. In this

work, however, sketches are not expected to be limited to single mountain crest or valley. The user may

draw many mountain ridge silhouette lines to create layers of mountain range scenery (Figure 6). Next,

the sketch is examined using a sweep-line algorithm to determine the relative ordering of each mountain

silhouette based on distance to the camera. Once the set of terrain ridge and silhouette lines is known,

and the set of desired silhouette lines is extracted from the sketch, the two sets of lines can be paired. The

pairing process attempts to minimize the amount of modification required to the terrain while preserving

the goal that the final terrain will match the silhouette of the sketch. With this in mind, the authors describe

an algorithm that pairs together the individual sketch ridge lines with the pre-existing set of ridge lines
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Figure 6: An example sketch and resulting terrain modification. Image from [21].

in the terrain. Once the set of lines are matched, some post processing is applied to the sketches to insure

that they extend fully to the ground along the same trajectory that they were drawn with. Next, for each

sketch line-terrain ridge pair, the offset is calculated and a displacement map is generated and smoothed

using a diffusion step. The final result of a sketch thus preserves the natural structure of the original terrain

while closely matching the silhouette of the user’s sketch. This approach makes a significant step towards

allowing procedurally generated terrains to be modified in an intuitive and simple manor. Unlike previous

work in sketch based terrain editing, the approach attempts to preserve geologic features. Thus, geologi-

cally correct inputs will result in mostly geologically correct outputs.

3.5 Example Guided Tools

We take a slight detour to examine an example based technique [20]. These techniques rely on simple

sketching to specify locations of basic terrain primitives such as mountains and valleys. In this system, the

user supplied an input sketch as a guide for the algorithm. Then, example terrain data is used to synthesize

a new set of data that matches the input guide. The input sketch contains a series of lines that will form

the ridges and valleys in the finished product (Figure 7). However, the user is not given control of the

actual elevation of these features. In other words, they may control the location of mountains, but not the

actual height and structure of the ridges. The first major step in the algorithm is to extract ridge and valley

information from the example data. This procedure involves finding an initial list of candidate points that
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Figure 7: An example input sketch (left), the example data (middle), and resulting terrain (right) respec-
tively. Image from [20].

may be along ridges or valleys. These points are then connected and an iterative process is used to throw

away excess connections until a simple tree graph remains that traces the features of ridges and valleys.

This graph is then traversed and important terrain features such as branch points and endpoints of ridges

are extracted. Then, a similar process is repeated on the input sketch such that locations of branching, etc

are located. What remains is to match up the example patches with the guide patches to synthesize a new

terrain. The synthesized terrain then possesses the overall structure of the guide while preserving the detail

of the example data. To achieve this, the example data is warped to better fit the input guide. Then using

a series of seam removal techniques, a polished output is generated. This approach offers quick and easy

sketching of large scale features, yet it lacks the ability to customize small scale regions. While the approach

generates convincing geologic features considerably faster than running physically accurate erosion simu-

lations, it still lacks the performance for real-time modification

4 Methods

In this project, we explored the use of virtual reality as an interface for quick and efficient terrain modeling.

Users of our system use hand gestures to interact with a 3D terrain model displayed inside a VR headset.

The terrain model is then output into a standard height field format (Figure 8).

4.1 General

Recall that a consequence of height fields is the limitation placed on the types of terrains that can be rep-

resented. In particular, terrains with caves or overhangs cannot be represented using height fields. As

a consequence, our system forces terrains made by its users to be represented by standard height fields
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Figure 8: AN overview of the pipeline. A virtual reality user interface is used to model and sculpt the
terrain surface mesh. Based on the mesh, a finished height field can be exported

throughout the editing process by filling in overhangs and caves.

The Oculus Rift VR headset was used for this project. The Rift is a widely available consumer VR

headset. The Rift is equipped with a set of hand held controllers that are motion tracked by the system.

Since the ability to track our users hand movements is a core aspect of this project, the Rift is a convenient

choice.

Unity3D was used to develop the interfaces explored in this project. Unity3D comes with drivers and

packages that allow for easy integration with the Oculus Rift. In addition, Unity3D possesses a well fea-

tured terrain engine that is relied on in this project for rendering terrains. In general, Unity3D is an intuitive

tool for prototyping projects making it a useful component in our project.

All interactions made with terrains in our system are through simple gestures. A gesture is formed by

pressing the primary trigger on a VR hand held controller, moving the controller, and finally releasing the

trigger. This gesture can be equated with the real life action of grabbing, moving, and releasing an object. A

gesture is defined only by the positions of the controllers when the trigger is pressed and the position when

the trigger is released. The position of the controller between the point of time when the gesture begins and

ends are not considered. This is primarily a consequence of performance limitations. Calculating terrain

modifications throughout a gesture would cause significant slowdown given our current implementation.

Additionally, we believe that gestures defined by only a start position and end position are conducive to

simple and easily replicated interactions. The area of effect of a gesture is visualized to the user in the form

of a spherical transparent overlay positioned at the location of the user’s hand. Users may control the size

of the area of effect by pressing forward or backward on a thumb stick mounted on the controller.

4.2 Interaction Schemes

We develop two interaction schemes to explore the effectiveness of VR for terrain generation. Through-

out development, we focused on designing intuitive interactions that seem similar to interaction with real

world objects.
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Figure 9: A 2D cross section representing the result of a user gesture in the mesh interaction scheme. Dark
(blue) circles represent unmodified control points on the terrain surface. Light (green) circles represent
control points effected by the interaction. The striped region represents the area of effect of the interaction,
a sphere of radius R. The arrow represents the interaction vector: a vector from the start of the gesture, S,
to the end of the gesture, T .

4.2.1 Mesh

The first interaction scheme is similar to the mesh sculpting interface discussed in [2]. In this scheme,

interaction gestures stretch the surface of the terrain in the direction of the gesture. The area modified by the

interaction is controlled by a grid of control points positioned on the surface of the terrain. Control points

are modified only if they are within the area of effect specified by the user at the start of the interaction.

Figure 9 shows a 2D cross section of an interaction in this scheme. In the figure, dark (blue) circles represent

unmodified points and light (green) circles represent modified control points. The striped region represents

the area of effect of the interaction.

A falloff curve is used to control the magnitude of control point displacement. Control points outside

of the area of effect are not modified by this interaction. Points inside the area of effect are displaced

using a combination of a sigmoidal weighting curve and the interaction vector. The choice of sigmoid

weighting curves is motivated by the ”goo” curve discussed in [4] (Figure 2). Let σ(t) be a sigmoid curve.

σ(t) = 6t5 − 15t4 + 10t3. Let ~D = T − S be the interaction vector, S be the start point of the gesture, T be

the end point of the gesture, R be the radius of the area of effect, and pi be the position of a control point

within the area of effect. After an interaction, each control point pi within the area of effect is displaced such

that pi = pi + ~Di where. ~Di = σ
(
1− distance(S,pi)

R

)
· ~D.In order to ensure that consecutive interactions are

consistent, the control point mesh is reset after every interaction. To achieve this, a height field is generated

after each interaction. The elevation stored in each cell of the height field is highest point on the mesh
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Figure 10: The result of user gesture in the sand interaction scheme. Striped region denotes redistributed
material. Capsule in top panel represents the area of effect of the interaction. The arrow represents the
interaction vector, ~D: a vector from the start of the gesture, S to the end of the gesture, T .

that intersects a vertical line cast from the position of the height field cell center. This process removes any

overhangs that resulted from an interaction. Once the height field is generated, the control point mesh is

reset to a uniform grid aligned with the height field cell centers and the vertical position of each control

point is set to the elevation stored in each corresponding height field cell.

4.2.2 Sand

The second interaction scheme is analogous to a sandbox. As opposed to distorting the terrain surface,

interactions in this scheme emulate the process pushing sand around in a sandbox. Figure 10 shows a 2D

cross section of an interaction in this scheme. The capsule region shown in the top panel represents the

area effected by the interaction. The striped region represents the intersection of the volume of the capsule

and the terrain. The material within this intersection is redistributed in the the direction of ~D, the vector of

interaction.

Interactions in this scheme directly modify the underlying height field. After a gesture is completed, a

capsule is formed by tracing the area of effect sphere from the interaction start, S to the interaction end,

T . In 3D, this is a cylinder with hemispheres at the end caps. All height field cells such that the position

of the center of the cell is within the capsule are considered for modification. Let hi be the height of cell i.

Additionally, let Pi be the xy position of cell i. We label this set of cells such that 0 ≤ i ≤ n. Let bi and ti

be the height of the bottom and top of the capsule at Pi. Let ri equal the length of the height field column

segment which intersects the capsule, ri = min(max(hi − ab, 0), ti − bi). The height of the intersection is

removed from cell hi. For all cells within the area of effect ellipsoid: hi = hi − ri. The removed material:
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Figure 11: Smoothing function used to even out distribution curve.

mtotal is summed among all n cells considered: mtotal =
∑n

i=0 ri.

Once all material within the intersection of the terrain and the capsule is removed, the quantity of

material removed from each cell is used to generated a distribution curve for the later deposition of the

material. The curve is used to control where the removed material is deposited along the xy projection of

the capsule. The distribution curve is defined by a discrete set of samples. Let L be the number of samples

in the curve. L = ddistance(Sxy, Txy)e. Every height field cell maps to a sample index, j, in the distribution

curve. Let ~Oi = Pi − Sxy . First, the component of ~Oi along ~D is found: comp~D
~Oi =

~D· ~Oi

|~D|
. The index, j

mapped to from Pi is: j = min(max(
⌊
comp~D

~Oi+R

|~D|+2R

⌋
, 0), L)

Once the distribution curve sample index has been identified at cell Pi. the quantity of removed ma-

terial, ri, at the cell is distributed equally across distribution slices dj+1 through dL. The mapping of cell

positions to a distribution curve index is based on how close the cell is to T . Cells closer to the end of the

interaction movement are mapped relatively closer the end of the curve. By distributing the material within

a cell across all curve samples with a higher index, the distribution will ensure that material is only moved

in the direction of the interaction vector, ~D.

Once this step has been completed for all height field cells, the distribution curve is smoothed to avoid

too much weight at the very end of the curve. To accomplish this, we multiply our distribution curve at

each sample, dj by a smoothing function s(t). dj = dj · s( j
L ). We choose s(t) to be a semi circle scaled 2x on

the y-axis as seen in Figure 11.

In addition to the distribution curve, a weighting is applied to match the way in which material is

removed. This final weighting is based on the original capsule. Let ci be the height of the capsule at Pi.

Finally, let wi be the final weight calculated for the ith cell. wi = dj · ci (where dj is the value stored in
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the jth sample of the distribution curve. j is calculated above). The combined weight of all n cells is then

calculated. wtotal =
∑n

i=0 wi. Finally, for cell, the final height is assigned: hi = hi+mtotal · wi

wtotal
. In the first

step, material is removed from the height field and summed into mtotal. Since the sum of all wi

wtotal
is equal

to 1, the entirety of mtotal will be returned to the height field. Thus, the sum total of all elevation stored in

the height field is preserved during the interaction.

In addition to redistributing (pushing) material, user’s have the option to drag and drop material. If the

user ends a gesture at a position above the terrain surface, a drag and drop is completed instead of a push

interaction. Drag and drop interaction function similarly. Material is removed within the intersection of the

terrain and the area of effect sphere. However, instead of spreading the removed material out, the removed

material is simply added to the height field in a circular region at the xy position of the controller when the

gesture was completed. A similar weight function is used to control the deposition distribution. For drag

and drop interactions, the weight at cell i is wi = distance(Pi, T ). Similarly, all weights are then summed

and the final height assignment is hi = hi +mtotal · wi

wtotal
.

4.2.3 Erosion

In the sand interaction scheme, we simulate an ongoing erosion process as users interact with the terrain.

The erosion function is only used in the sand model since it fits the analogy of a sandbox. In contrast, the

mesh model does not appear to intuitively share this behavior. This erosion process keeps overly steep

cliffs from being formed as well as smoothing the terrain surface. The erosion process is designed after the

hill slope stability model discussed in [16]. Hill slopes above a certain threshold angle are collapsed and

material is moved downhill. For each erosion iteration, the elevation at each cell, ci, is compared to its four

non-diagonal neighboring cells to determine the lowest neighbor, cl. The horizontal distance, d, between

cell ci and cl is calculated based on the size of the terrain and the resolution of the height field. The angle

between the cells is then calculated using

θ = tan−1(
ci − cl
d

)

If θ is greater than 55, then ci−cl
4 is added to cl and subtracted from ci. This calculation simulates the

process of unstable material moving downslope. The calculations made in this algorithm are completed

in parallel such that during an erosion iteration, material transfered from ci to cl does not effect the ero-

sion calculation made in cell cl. Material is only swapped between the lowest neighbor of ci to simplify

calculations. The algorithm described is a standard method of simulating simple hill slope erosion.
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4.3 Evaluation

We evaluate the success of our project based on multiple metrics. We assessed the intuitive qualities of

the interface during development via subjective analysis. Additionally, during development, we received

informal feedback from fellow researchers on the intuitiveness and success of our tool. Finally, we created

a user study to compare the effectiveness of the two interaction schemes.

4.3.1 User Study

We ran a user study (N = 25) to assess which interaction scheme is more intuitive for users. Study par-

ticipants were chosen based on interest out of a population of students at Union College. Each study

participant tried one of the two interaction schemes in an alternating order. An individual study session

begins with a description of the research problem and motivation for my proposed solution. Users are then

guided through a tutorial of the interaction scheme they are assigned. In this tutorial, I walk users through

the basic interactions available within the scheme as well as other baseline features such as how to modify

the size of the area of effect. Throughout the demo, if users are not utilizing a feature that seemed relevant

to me, I would remind the user of this capability. This step was done to ensure users were aware of how to

use all aspects of the tool.

Once the user appeared to be acquainted with the tool, they are given a test in order to determine their

ability to use each their assigned interaction scheme to build a specified terrain. Users begin with a flat,

unmodified terrain plane. Superimposed above this plane, users were shown a ghost terrain representing

the goal state of their initial flat landscape. The ghost terrain is represented as a transparent overlay as seen

in Figure 12.

Users are given 10 minutes to transform the unmodified terrain plane into the goal terrain. The goal

terrain is pulled from real terrain elevation data. Additionally, the volume of goal terrain is modified such

that it is equivalent to the volume of material given in the initial terrain plane (since the sand scheme

conserves volume).

Throughout the editing process in the study, the goal terrain is compared to the users attempts at recre-

ating the goal terrain. The comparison calculates the total difference of each height field cell of the user

created terrain to the respective cell of the goal terrain. We use the sum of these differences as a score in-

dicating the success of the interface. By making comparisons of the user’s terrain throughout the editing

process, we can assess factors such as the final score and the general rate in which the work-in-process

terrain converges towards the goal terrain.

In addition to collecting quantitative data on the progress of our users, we created a survey that users
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Figure 12: Goal ”ghost” terrain represented to user study participants. The ghost landscape is rendered
in two colors. The goal terrain regions currently at a higher elevation than the user’s terrain are colored
purple and the regions lower are colored orange.

filled out following their experience. The survey asks users to rank how intuitive the system felt, how

physically uncomfortable the system was, and short answer elaborations on the above questions.

With data from user performance using both the mesh interaction scheme and the sand interaction

scheme, as well as qualitative user responses, we were be able to gain insight regarding which interaction

scheme is more effective.

We design our two interfaces to promote fair comparison. To achieve this, we ensured that many of the

variables impacting the use of the two systems were equivalent. For example, the resolution of the control

point mesh used in the mesh scheme is equivalent to the resolution of the height field we use in the sandbox

scheme. Additionally, both schemes have identical user interfaces and identical visualizations. We ensure

that both schemes have zero delay and lag during interaction.

5 Results

Results of our study show that the sand scheme allows users to achieve higher scores in the test. Figure

13 shows the mean score over time of all participants using the sand model and mesh model. The x-axis

represents the time progressed in the 10 minute session. The y-axis is inverted to show the scores increasing

over time (low offset between user terrain and goal terrain mean higher scores). The median lines of the
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Figure 13: Results of user study. Solid and dashed lines represent the median of all users in the sand and
mesh groups respectively. Shaded regions represent the 25th and 75th percentile ranges.

mesh model (dashed line) is significantly smoother than the median for the sand model. This suggests that

interactions may be more consistent in the mesh model. Additionally, the presence of the erosion model

in the sand model may play a role in this effect. Despite the less consistent score gain in the sand model,

overall, the median sand model score climbs faster and reaches a higher final score. The scores in both

groups were compared at the 10 minute mark and shown to have an insignificant difference with p > 0.05

(p = 0.083).

Interestingly, although there was a trend towards higher scores in the sand model, the best two scores in

the test were achieved in the mesh model. Based only on qualitative observation and discussion with these

two participants, it was evident that they had the most experience using VR hardware. This suggests that

experienced VR users may be able to use the mesh model more successfully than the sand model.

Data from two participants were not included in the final analysis. The first participant experienced a

major bug in the system which rendered their data useless. The second participant was mistakenly allowed

to take the test despite having had prior experience with the system.

Users are asked to rank how natural or intuitive their experience was. The results of this component of

the followup survey match the trend in user scores. Figure 14 shows a box plot of user responses provided

on a 5 point scale. Median scores are shown as black lines. Boxes represent 25th and 75th percentile ranges.
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Figure 14: Results of followup survey. Users were asked to rank how natural and intuitive their experience
with the system was. Black lines represent the median and boxes represent the 25th and 75th percentile
ranges.

Median scores are higher for the sand model participants.

Users are asked to justify their ranking on the question above. A variety of responses were submitted

to this question. A common trend was users indicating that at first they the system did not feel intuitive

however quickly it began to feel natural. This result indicates that our system may be relatively easy for

beginners to learn.

6 Conclusions

The goal of the project was to determine which interaction scheme was more intuitive for users with a range

of backgrounds. Throughout the development of our system, we attempted to ensure that our system

was friendly to non-technically experience users. This meant avoiding reliance on complicated GUI and

focusing on intuitive gestures. The results of our user study indicate that users have an easier time using

the sand model than the mesh model.

Further work may be done to advance our system. We believe that multi-handed gestures could be

leveraged for more advanced interactions. For example, during testing, an interface was considered where

users could use two hands to stretch sections of terrain into flat regions. Another area of improvement
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would be more responsive interactions. Currently, interactions made with the system are not processed

until a gesture is completed (in other words, until the trigger is released). The ability for users to see the

impact of a gesture before the completion of the gesture would aid in fine tuned control.

One factor that may have largely influenced the results of our study was the presence of the erosion

model. The model essentially amounts to a smoothing filter on the terrain. This may have played a signif-

icant role in participants ability to achieve smooth and convincing results in the sand model. In order to

validate that the difference in the two interaction scheme came from how users interacted as opposed to

the erosion model, farther work could be done to isolate this parameter.

In the author’s perspective, the task of modeling terrains has many inherent properties that facilitate

natural gestural interactions. For example, it is easy to imagine shaping a landscape within a sandbox or

with a pile of clay. Consequently, we believe that virtual reality may be effectively leveraged for this task.
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